2011年江苏高考数学试卷(2011江苏高考数学试卷及答案评分标准)

2023-03-22 128阅读

本篇文章给大家谈谈2011年江苏高考数学试卷,以及2011江苏高考数学试卷及答案评分标准对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

2011年江苏高考数学试卷(2011江苏高考数学试卷及答案评分标准)

2011江苏高考数学20题第二问详解你怎么做的啊

既然有人给你解答了,我就讲一下思路。

第1问就不写了。

第2问道理差不多,首先要相信只有等差数列才能同时满足那两个条件,在这个前提下大胆猜测结论,然后就是证明。高考难度通常比较低,中学生知识又少,要相信结论只能是很简单的。

先把条件用一遍

n3时(S_{n+3}-S_{n})+(S_{n}-S_{n-3})=2S_3,即

a_{n+3}+a_{n+2}+a_{n+1}-a_{n}-a_{n-1}-a_{n-2}=2S_3 (*)

把n用n+1代之后和这个式子减一下得到

a_{n+4}-2a_{n+1}+a_{n-2}=0,即a_{n+4}-a_{n+1}=a_{n+1}-a_{n-2}

这样就得到了第一类的三组间隔为3的等差子列A_1={a_2,a_5,...}, A_2={a_3,a_6,...}, A_3={a_4,a_7,...}

同理把k=4的条件

a_{n+4}+a_{n+3}+a_{n+2}+a_{n+1}-a_{n}-a_{n-1}-a_{n-2}-a_{n-3}=2S_4 (**)

用一遍可以得到第二类的四组间隔为4的等差子列B_1={a_2,a_6,...}, B_2={a_3,a_7,...}, B_3={a_4,a_8,...}, B_4={a_5,a_9,...}

并且注意除a_1外{a_n}的任何一项必同时属于某个A_u和某个B_v。

下一步证明每一类内部的几个等差数列的公差是一样的,因为3和4互质,做到这里应该已经可以相信结论一定是对的。

用(**)-(*)得到a_{n+4}-a_{n-3}=2a_4,也就是说又得到一类间隔为7的等差子列。假定A_u的公差为d_u,那么对于任何a_n属于A_u,利用7d_u=a_{n+21}-a_{n}=6a_4,所以d_u=6/7*a_4,即第一类的三组序列的公差相同,简记为d。同理考察a_{n+28}-a_{n}得第二类的四组序列公差也相同,简记为D,其大小为D=2a_4。

(如果没有想到(**)-(*)这步,那么可以考察a_{n+12}-a_{n},注意a_{n}可以取遍所有的A_u和B_v,可以得到d_u和D_v和u,v无关,只不过无法直接得到d,D及a_4的关系)

下一步目标就很明确了,证明整个{a_n}(第一项除外)就是等差数列,同样是从两类序列的公共点着手,取几个特殊点解方程即可。

利用

a_8 = a_2+2d = a_4+D

a_10 = a_2+2D = a_4+2d

解出d/3=D/4,再代入 a_{n+4} = a_{n}+D = a_{n+1}+d 即得从a_2开始{a_n}是等差数列且公差为D-d。

最后结合前面的d=6/7*a_4, D=2a_4即得D=8,d=6,a_4=7,从而得到a_n=2n-1,这恰好对第1项也成立。

(如果前面没想到(**)-(*)那步的话就把(*)变形成3d=2S_3,把(**)变成4D=2S_4,也可以解出同样的结论。总之最后一步纯粹是解线性方程组,已经不用动脑子了,大不了多取几个点)

2011年江苏省数学高考试卷难吗

2011年江苏省数学高考试卷不难,但不难的试卷不是每个人都能考好的!

2011江苏高考数学20题第二问详解

先取n=5,再代k=3,4得

s1+s7=2(s4-s3) 1 和s2+s8=2(s5-s3)

两式相减得a2+a8=2a5

得an是等差数列即an=1+(n-1)d,

再得s2+s8=2(s5+s3),s1+s9=2(s5+s4)

两式相减得a9-a2=2a4

即7d=2+6d

所以d=2

an=2n-1

[img]

2011年江苏高考数学试卷的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于2011江苏高考数学试卷及答案评分标准、2011年江苏高考数学试卷的信息别忘了在本站进行查找喔。

免责声明:本文来自网友投稿,不代表助推了的观点和立场,如有侵权请联系本平台处理。