抛物线顶点公式(二次函数抛物线顶点公式)

2023-03-14 162阅读

本篇文章给大家谈谈抛物线顶点公式,以及二次函数抛物线顶点公式对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

抛物线顶点公式(二次函数抛物线顶点公式)

抛物线顶点坐标公式是什么?

顶点坐标公式是y=a(x-h)²+k,a≠0,k为常数,顶点坐标(-b/2a,(4ac-b²)/4a),顶点坐标是用来表示二次函数抛物线顶点的。

解:y=ax+bx+c(a≠0)的顶点坐标公式是(-b/2a,(4ac-b²)/4a)。

海伦公式是:假设在平面,有一个三角形容,边长分别为a、b、c,三角形的面积s可由以下公式求得:s=√[p(p-a)(p-b)(p-c)]。

而公式里的p为半周长:p=(a+b+c)/2。

抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c)。

(2)当△=b^2-4ac0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0。

(a≠0)的两根.这两点间的距离AB=|x₂-x₁|。

当△=0,图象与x轴只有一个交点。

当△0,图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0。

抛物线y=ax^2+bx+c的最值:如果a0(a0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a。

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。

抛物线的顶点坐标公式

顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k (a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。

当h0时,y=a(x-h)² 的图象可由抛物线y=ax2;向右平行移动h个单位得到;

当h0时,则向左平行移动|h|个单位得到;

当h0,k0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;

当h0,k0时,将抛物线y=ax² 向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;

当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k 的图象;

当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k 的图象;

因此,研究抛物线y=ax²+bx+c (a≠0)的图象,通过配方,将一般式化为y=a(x-h)²+k 的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。

扩展资料:

抛物线y=ax²+bx+c 的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b²-4ac0,图象与x轴交于两点A(  ,0)和B(  ,0),其中的  ,  是一元二次方程y=ax²+bx+c

(a≠0)的两根.这两点间的距离AB=|  -  |.

当△=0,图象与x轴只有一个交点;

当△0,图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0。

用待定系数法求二次函数的解析式:

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax2+bx+c(a≠0)。

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0)。

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0)。

参考资料:百度百科——顶点坐标

[img]

抛物线顶点式是什么?

抛物线顶点式是y=a(X-h)2+k(a、h、k为常数,a≠0)。

抛物线方程公式:

一般式:ax²+bx+c(a、b、c为常数,a≠0)。

交点式(两根式):y=a(x-x1)(x-x2)(a≠0)。

其中抛物线y=aX2+bX+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2+bX+c=0的两实数根。

抛物线的性质

1、抛物线是轴对称图形,对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。

2、二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

抛物线顶点公式 抛物线顶点公式介绍

1、公式中的(h,k)为抛物线的顶点,抛物线的顶点式为y=a(x-h)2+k(a≠0)。

2、顶点坐标:对于二次函数y=ax2+bx+c(a≠0)其顶点坐标为 [-b/2a,(4ac-b2)/4a]

3、知道抛物线的顶点,只需再给另一点的坐标就可以求解析式。

4、例如:已知抛物线的顶点为(-3,2)和(2.1)。可设解析式为y=a(x+3)2+2。再把x=2,y=1代入。求得a=-1/25即y=-1/25(x+3)2+2即可。

抛物线的顶点公式是什么?

抛物线顶点坐标公式:

y=ax²+bx+c(a≠0)的顶点坐标公式是(-b/2a,(4ac-b²)/4a)。

y=ax²+bx的顶点坐标是(-b/2a,-b²/4a)。

抛物线标准方程

右开口抛物线:y^2=2px。

左开口抛物线:y^2= -2px。

上开口抛物线:x^2=2py y=ax^2(a大于等于0)。

下开口抛物线:x^2= -2py y=ax^2(a小于等于0)。

[p为焦准距(p0)]。

特点

在抛物线y^2=2px中,焦点是(p/2,0),准线的方程是x= -p/2,离心率e=1,范围:x≥0。

在抛物线y^2= -2px 中,焦点是( -p/2,0),准线的方程是x=p/2,离心率e=1,范围:x≤0。

在抛物线x^2=2py 中,焦点是(0,p/2),准线的方程是y= -p/2,离心率e=1,范围:y≥0。

在抛物线x^2= -2py中,焦点是(0,-p/2),准线的方程是y=p/2,离心率e=1,范围:y≤0。

关于抛物线顶点公式和二次函数抛物线顶点公式的介绍到此就结束了,记得收藏关注本站。

免责声明:本文来自网友投稿,不代表助推了的观点和立场,如有侵权请联系本平台处理。