格兰杰原因(怎么看是否存在格兰杰原因)
本篇文章给大家谈谈格兰杰原因,以及怎么看是否存在格兰杰原因对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
那进行完格兰杰检验之后,一个变量是另一个变量的格兰杰原因,能说明什么?
说明残差平方和曲线拟合。
比如:
如果A是B的granger原因,说明A的变化是B变化的原因之一。我们可以解释,A对B的影响在一定程度上是积极的。
然而,这并不意味着A随着B的变化而变化,因为我们所有的格兰杰因果专业化都是基于大量的统计数据。所以只能说在一个相对长期累积的情况下,A的变化会导致B的变化。
曲线拟合:贝塞尔曲线与路径转化时的误差。值越大,误差越大;值越小,越精确。
扩展资料:
格兰杰因果关系问题
1.首先格兰杰因果关系检验是一种统计时间顺序,并不意味着存在因果关系,是否存在因果关系需要根据理论、经验和模型来确定。
2.其次格兰杰因果检验的变量应该是稳定的。如果单位根检验发现两个变量不稳定,则不能直接进行格兰杰因果检验。
3.协整结果仅表明变量之间存在长期均衡关系。由于变量不稳定,需要协整。因此,首先对变量求导。
4.长期均衡并不意味着分析结束,还应考虑短期波动,做误差修正检验。
协整的问题
1.格兰杰检验只能用于平稳序列,这是格兰杰检验的前提。因果关系不是我们通常理解的因果关系,而是早期x的变化可以有效地解释y的变化,因此被称为“格兰杰原因”。
2.伪回归很可能出现在非平稳序列中。协整的意义在于检验其回归方程所描述的因果关系是否为伪回归,即检验变量之间是否存在稳定的关系。因此,非平稳序列的因果检验是协整检验。
3.平稳性检验有三个功能:
(1)检查平稳性,若平稳性为平稳,则进行格兰杰检验;如果是非平稳的,做协同阳性试验。
(2)协整检验中各序列应使用的酉阶。
(3)判断时间学习列的数据生成过程。
all是单个变量的格兰杰原因
如果A是B的granger原因,说明A的变化是B变化的原因之一。我们可以解释,A对B的影响在一定程度上是积极的。
这并不意味着A随着B的变化而变化,因为我们所有的格兰杰因果专业化都是基于大量的统计数据。所以只能说在一个相对长期累积的情况下,A的变化会导致B的变化。
格兰杰(Granger)因果性检验目前在计量经济学中应用比较多,不过我们当初学习计量并没有学这个检验方法,经济学专业的学生应该会学到吧。上次谭英平师姐给我们讲宏观经济统计分析课时曾经给我们介绍过,不过也只是很肤浅地说了说原理。
单位根检验、协整、格兰杰因果检验有什么关系?
实证检验步骤:
先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。
若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。如果有,则可以构造VEC模型或进行Granger因果检验,检验变量之间“谁引起谁变化”,即三者之间的关系为因果关系。
资料拓展:
一、平稳性问题
1、单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。
2、当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。
3、当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验
A、EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性(一般用EG两步法)
B、JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)
4、当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别
二、协整性问题
1、格兰杰检验只能用于平稳序列, 这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。
2、非平稳序列很可能出现伪回归,协整的意义就是检验它们的回归方程所描述的因果关系是否是伪回归,即检验变量之间是否存在稳定的关系。所以,非平稳序列的因果关系检验就是协整检验。
3、平稳性检验有3个作用:(1)检验平稳性,若平稳,做格兰杰检验,非平稳,作协正检验。(2)协整检验中要用到每个序列的单整阶数。(3)判断时间学列的数据生成过程。
三、格兰杰因果问题
第一,格兰杰因果检验是检验统计上的时间先后顺序,并不表示而这真正存在因果关系,是否呈因果关系需要根据理论、经验和模型来判定。
第二,格兰杰因果检验的变量应是平稳的,如果单位根检验发现两个变量是不稳定的,那么不能直接进行格兰杰因果检验。
第三,协整结果仅表示变量间存在长期均衡关系,因为变量不平稳才需要协整,所以先对变量进行差分,平稳后可以用差分项进行格兰杰因果检验,来判定变量变化的先后时序,之后进行协整,看变量是否存在长期均衡。
第四,长期均衡并不意味着分析的结束,还应考虑短期波动,要做误差修正检验。
参考资料:百度百科-单位根检验
什么是格兰杰原因
格兰杰因果检验简要介绍
格兰杰(Granger)因果性检验目前在计量经济学中应用比较多,不过我们当初学习计量并没有学这个检验方法,经济学专业的学生应该会学到吧。上次谭英平师姐给我们讲宏观经济统计分析课时曾经给我们介绍过,不过也只是很肤浅地说了说原理(这种教学有一定的危险性啊)。
要探讨因果关系,首先当然要定义什么是因果关系。这里不再谈伽利略抑或休谟等人在哲学意义上所说的因果关系,只从统计意义上介绍其定义。从统计的角度,因果关系是通过概率或者分布函数的角度体现出来的:在宇宙中所有其它事件的发生情况固定不变的条件下,如果一个事件A的发生与不发生对于另一个事件B的发生的概率(如果通过事件定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又先后顺序(A前B后),那么我们便可以说A是B的原因。
早期因果性是简单通过概率来定义的,即如果P(B|A)P(B)那么A就是B的原因(Suppes,1970);然而这种定义有两大缺陷:一、没有考虑时间先后顺序;二、从P(B|A)P(B)由条件概率公式马上可以推出P(A|B)P(A),显然上面的定义就自相矛盾了(并且定义中的“”毫无道理,换成“”照样讲得通,后来通过改进,把定义中的“”改为了不等号“≠”,其实按照同样的推理,这样定义一样站不住脚)。
事实上,以上定义还有更大的缺陷,就是信息集的问题。严格讲来,要真正确定因果关系,必须考虑到完整的信息集,也就是说,要得出“A是B的原因”这样的结论,必须全面考虑宇宙中所有的事件,否则往往就会发生误解。最明显的例子就是若另有一个事件C,它是A和B的共同原因,考虑一个极端情况:若P(A|C)=1,P(B|C)=1,那么显然有P(B|AC)=P(B|C),此时可以看出A事件是否发生与B事件已经没有关系了。
因此,Granger(1980)提出了因果关系的定义,他的定义是建立在完整信息集以及发生时间先后顺序基础上的。至于判断准则,也在逐步发展变化:
最初是根据分布函数(条件分布)判断,注意Ωn是到n期为止宇宙中的所有信息,Yn为到n期为止所有的Yt (t=1…n),Xn+1为第n+1期X的取值,Ωn-Yn为除Y之外的所有信息。
F(Xn+1 | Ωn) ≠ F(Xn+1 | (Ωn �6�1 Yn)) - - - - - - - (1)
参考资料:baidu
[img]关于格兰杰原因和怎么看是否存在格兰杰原因的介绍到此就结束了,记得收藏关注本站。