离子电推进(离子电推进技术书)

2023-03-15 144阅读

本篇文章给大家谈谈离子电推进,以及离子电推进技术书对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

离子电推进(离子电推进技术书)

我国空间站上用到的“电推进”,是怎样一种装置?

电推进是指将工程学在超高压电离后送入强磁场,典型的是惰性气体氙。

磁场作用下带电的离子以极高的速度离开发动机,产生反推力。 由于电离效率高,电磁场强,工质离开的速度简单地达到数万米每秒,化学燃料工质远远超过最高几千米每秒的速度。在宇宙推进领域,一个发动机核心的评价指标被称为比冲,这个数据越大效率越高,可以简单地理解为发动机越厉害。 在一些使用不同燃料的发动机中,固体发动机200多台,液氧煤油和四氧化氮/肼类300多台,最强的液氧液氢也在450左右。 电推很容易就能达到3000以上!

电推进也是现在最有效率的推进方式,消费工程学极少,推进效果好,根据发动机的原理,理论上如果有足够的燃料的话,可以说几乎是永远工作的。 电力来源也容易解决:太阳能,用不完。 现在的缺点是人类现在的技术能实现的推力极小,连牛顿都是很大的障碍(牛顿只能有一个鸡蛋)。

但是,这在宇宙环境中可以接受,集沙成塔的效果已经足够,我们领域的黑科技GOCE卫星在离地面只有270公里的高度飞行,通常在两个月内被拉回大气,而氙仅40公里就完成了那四年的任务。

另一方面,在1998年深空一号(Deep  Space  1)的任务中,NASA首次成功验证了离子电推进技术在深空探测任务中的应用,现在美国、欧洲空局、日本的深空探测几乎都在使用。 我国在实践十七类高轨道卫星方面应用过,深空探测领域还在探索中。 离子液体微电子推进器是先进的大比冲、高性能微纳米卫星动力系统解决方案,可以形象地称为微纳米卫星的“发动机”。

[img]

离子推进器的技术原理

2014年7月 中国离子电推进发动机累计运行超3000小时

传统的火箭是通过尾部喷出高速的气体实现向前推进的。离子推进器也是采用同样的喷气式原理,但是它并不是采用燃料燃烧而排出炽热的气体,它所喷出的是一束带电粒子或是离子。它所提供的推动力或许相对较弱,但关键的是这种离子推进器所需要的燃料要比普通火箭少得多。只要离子推进器能够长期保持性能稳定,它最终将能够把太空飞船加速到更高的速度。

相关技术已经应用到一些太空飞船上,比如日本的“隼鸟”太空探测器,欧洲的“智能1号”太空船和美国的”黎明号“等,而且技术已经取得了很大的进步。未来最有希望成为更远外太空旅行飞船推进器的可能就是VASIMR等离子火箭。这种火箭与一般的离子推进器稍有不同。普通的离子推进器是利用强大的电磁场来加速离子体,而VASIMR等离子火箭则是利用射频发生器将离子加热到100万摄氏度。在强大的磁场中,离子以固定的频率旋转,将射频发生器调谐到这个频率,给离子注入特强的能量,并不断增加推进力。试验初步证明,如果一切顺利,VASIMR等离子火箭将能够推动载人飞船在39天内到达火星。

科幻作品中的离子电推发动机在现实中没有可能研究出来?

大家口中的电推一般指的就是离子电推进发动机,我们在很多科幻片中都见到过它的身影,比如《普罗米修斯》中的普罗米修斯号飞船就装载了四台炫酷无比的离子发动机,登陆异形星球的场景实在震撼。不过请不要以为离子发动机只是停留在科幻片中,早在1959年美国物理学家哈罗德·R·考夫曼就制造出了第一台离子发动机,当时用的推进剂是汞。

想必各位心中肯定有一个疑问,既然先进的离子发动机在1959年就被制造出来了,为什么到现在我们还在地球上徘徊,科幻片中不是说这种发动机能上天入地么?不妨来了解下离子发动机的前世今生。离子电推进发动机的原理是什么?最早的离子发动机的原理很简单,将推进剂电离,然后将其中的电子和离子分离,然后将质量比较高的离子通过电场加速向后方高速排出,即可获得推进动力。如果要调节发动机推力,那么只要调整电场的强度即可。当然您肯定发现了刚分离的电子去哪里了?带正电荷的粒子排出后发动机会积累负电荷,因此最后必须用电子枪将电子注入羽流中,让它们在宇宙中继续团圆成完整的原子。

经济性非常好;结构简单、推力调节方便;比冲是化学火箭发动机的十倍以上这里必须要解释一个比冲的概念:比冲的定义是火箭单位质量推进剂产生的冲量,简单的说就是发动机的的效率,越高表示效率越好,单位质量的燃料能将火箭加速到更快的速度。比如早期用于通讯卫星的寿命期内轨道维持燃料一般高达数吨,改用电推发动机后只要数百千克即可。

看上去很美的离子发动机却有一个致命的弱点,它的推力太小了,甚至只能吹气一张纸,这限制了它的应用,但这个弱点在太空中却不那么显著,所以离子发动机还是如火如荼的发展起来了。离子发动机主要有哪几种?各有什么优缺点通过离子发动机的结构我们可以知道这种推进方式有几个关键,分别是:。等离子体的产生方式。离子的加速方式。一般我们以离子的加速方式来区分离子发动机,分别是静电式(离子式)和电磁式(霍尔式),静电式的原理是推进剂电离后,利用栅极提取离子,再利用静电场来加速离子,最终用电子枪中和离子避免电荷在发动机上积累。

电磁型则是利用磁场控制电子的运动,让电子在推进方向上积累,形成一个电位差,然后再用这个制造的电位差来加速离子,获得推进动力。从两者的结构区别来看静电式的体积会比较大,因为静电式推进器比冲很高,但它的推力并不高,主要是因为静电式推进器的结构制约了它的推力增加,我们知道增加推力有两个方式:增加离子排气速度;增加离子排气密度

前者静电式已经做到了极致,在几种结构中它的喷口离子速度是比较高的,但它的流量上不去,因为静电式是通过格栅电位差加速的,当网孔和电压确定以后,它的离子排气密度就确定了(存在空间电荷效应,电荷密度不能太高,否则分离的离子和电子会重新捕获成电中性原子),因此要增加流量势必会增加网孔数量,那么它的尺寸就会几何级数增加,相当于流速确定的情况下,要让水多流一点出来,就只能多开几个孔了。

静电式离子推进的结构原理图

电磁式则刚好与静电式相反,比如电磁式中如火如荼发展的霍尔推进发动机中,它的离子排气速度比较低,但它的流量很高,这有点像化学火箭,但它仍然比化学火箭比冲要高得多。另外电磁式推进还有一个好处,它没有加速栅极,不存在栅极寿命的问题,并且在推力上取得了一个平衡(静电式推力实在比较小,但比冲高,适合长时间执行任务的深空探测器),因此未来的载人深空飞船发动机发展中电磁式也许将占主导地位。

电磁式推进:霍尔推进的原理图

最后还得提一下电子场致发射发动机,其实它也是一种离子发动机,它的原理与以上几种都不同,在一个高压电场下,金属铯被激发的不稳定态形成一个泰勒锥,从锥尖射出的离子流在高压电场的加速下达到100千米/秒,从而形成推力,这种发动机成本低,结构简单,体积极小,但它的推力也极小,大约在150微牛以下,不过它的比冲极高可达10000S。

电子场致发射发动机的体积可以做到令人咋舌的程度,跟硬币差不多,它未来的应用是航天器的姿态维持,比如正在建设者中空间引力波天线。

电推发动机的推进剂与电离方式

了解了两种典型的电推进方式后,我们再来了解下推进剂以及离子产生的方式,为什么要先说推进方式后说离子产生方式呢?如果不这样的话倒过介绍来容易搞混概念。

电推发动机的推进剂

早期用的是剧毒物质汞,为什么要用这种剧毒物质呢?因为推进剂的选择有几个要求:容易电离;储量大,容易获取;密度大(燃料箱不占地方,而且推进效率高,因为排放的离子质量大)。但汞的缺点也是显而易见的,毒性前文已经说明,另一个特性是它尽管很容易电离,但首先要加热蒸发成蒸汽才达到电离条件,对于能耗管理要求极高的空间探测器来说,这可是个耗电大户。一般对于汞的缺点说明到这里也就结束了,但它还有另一个很少提及的问题,离子是带正电荷的,尽管电子束已经中和,但仍然存在汞离子吸附着在探测器表面的问题(电推进器的喷射束宽以及溅射角度很关键),比如探测器的热控材料与太阳能电池表面,严重影响原有设计性能。

从结构上看,这是一种静电式的离子电推发动机,它的离子束溅射角度是比较大的,因此必须要考虑对航天器附带损伤的问题。

氙的核外电子排布

现代电推进发动机一般选择惰性气体氙,它的“惰性”表明它不容易和其他物质产生反应,即使溅射后果影响也会小很多,氙原子比较容易电离。另外氙还有能在常温下达到超临界的特性,此时它的密度可达水的1.2倍,大大减小了存储空间,这对于体积大小极度敏感的探测器来说非常长重要。

除了氙以外还有别的推进剂吗?当然有,只要满足上述要求的都可以,比如固体特氟隆,也许这会让大家大跌眼镜,电推进发动机中还有固体“燃料”发动机的。

在这里要重新提一下汞,尽管汞存在诸多缺点,但它在未来深空载人探测任务上极具优势,因为它的密度极大,而载人飞行的飞船同样质量巨大,需要大量的推进剂消耗,而汞这种成本极低的“燃料”是未来深空载人任务的理想推进剂。

电推进发动机的电离方式

其实在离子发动机中这是第一步,因为离子发动机不能加速中性原子,只能加速电子(负电荷)或者原子核(离子(正电荷)),那么首要的任务就是将推进剂的媒介物质电离,一般的电离方式有:直流放电;电子轰击;射频放电;回旋共振

电离是在电离室(Discharge Chamber)内完成的,在充满工质的电离室内激发和并完成电离,在通过前文说明的比如离子推进是栅极,电磁推进则是交替磁场与电场等。有一点需要注意的是离子推进器中电离区和加速区是分离的,相对效率很很高,单位质量推进剂利用率很高,缺点则是结构比较复杂。电磁推进的电离区和加速区是一体的,结构简单,尺寸更小,对电源要求也比较低,相对可靠性也更高。

电推进发动机的电源

电推进发动机最关键的几个组成部分,发动机、推进剂与电源,所以电源是电推发动机的关键组成之一,一般现代航天器的电源有如下几种:太阳能电池;同位素电池。在土星轨道以内,探测器的电源用太阳能电池仍然是可以接受的,尽管太阳能密度降低,但对于探测器并不是特别高的电源需求仍然可以勉强满足,但各位肯定会发现,越是往外的探测器,太阳能天线会越来越大。

木星探测器朱诺,它的标志是均匀分布的三面巨大的太阳能电池,当然各位可能也发现了当年的旅行者根本就没有太阳能电池,因为它用的钚同位素电池,它的目标是太阳系以外,那里的太阳犹如一颗大星星,所以只能使用同位素电池,但对于电推这个耗电大户来说(千瓦级别的电推进发动机也只能达到数十最多上百毫牛),如果要达到载人级别的话怎么也得牛顿级别:

黎明号小行星探测器的太阳能电池功率:距离1AU:功率10000 瓦;距离3AU:功率1300 瓦。它携带的氙离子电推发动机推力为90毫牛,而在3AU时并不能全功率推进,因此电源将成为制约未来深空任务的重大因素之一,因为同位素电池尽管不受与太阳距离限制,但提供的功率仍然有限,必须要用功率更大的空间堆,比如能提供数十千瓦甚至百千瓦乃至兆瓦级别的空间堆。

空间核反应堆电源技术

空间核反应堆从原理上来看与地面的核裂变电站并没有区别,但热交换系统在空间堆中无法使用外界冷却水,只能通过辐射的形式散热,因此未来的空间堆必定会有一个超大的辐射散热盘,除非它采用热电直接转换的技术,但就当前的热电技术而言,效率还处在比较低的水平。

电推进发动机的应用

电推进发动机最早空间测试是在1964年发射的 SERT 1 (太空电力推进试验),探测器上有两台离子推进发动机,只有一台工作了约31分钟。1970年进行了第二次试验,仍然是汞离子推进发动机,累计工作17900小时中重复启动300次,经受了住了考验。

SERT-1

电推进发动机第一次商业应用是在1997年的“泛美5号”卫星,在航天界引起了不小的轰动。

最著名的一次应用是日本宇航局在2003年发射的“隼鸟号”探测器,装载了四台离子电推发动机,目标是探测25143号小行星(丝川小行星),这是第一次小行星取样返回计划,尽管因为燃料泄漏导致在环太阳轨道上多绕了一圈才回到地球,但成功的从丝川小行星上带回了物质(大约数千粒丝川小行星尘埃)。

同时探测两颗小行星的探测器是2007年9月27日发射的NASA黎明号小行星探测器,也是第一个探测小行星带的探测器,它在灶神星探测14个月后全身而退前往谷神星,靠的就是离子推进发动机的超长加速能力。

黎明号的发动机开机加速轨迹

2009年欧空局的绘制地球重力场和海洋环流的“高斯”卫星,因重力场必须要求低轨,如果没有电推发动机,它不可能在250千米的轨道上工作2年。

不知道各位有没有发现,高斯卫星非常流线型,这是考虑了大气阻力效果的气动外形,可见它的轨道是低到多夸张。

2013年我国第一次在实践九号A卫星上使用了离子推进系统,根据这个名字我们知道是静电推进式离子发动机。

限于篇幅不对各国电推进发动机做一一介绍了,不过就当前而言,电推发动机研制走在前列的是美国、德国、日本、中国、俄罗斯等,是不是少了英国和法国?其实这也正常,五常并不是所有时候都能凑齐的。

未来的大气层内展望

离子发动机从上世纪五十年代开始到现在,从最早的汞离子到现在氙离子霍尔推进,但它们并不能在大气层内应用,假如未来要应用的话必须要实现以空气为介质的离子电推发动机。这才能实现《普罗米修斯》中普罗米修斯号穿越异形星球的大气层,在地面降落的壮观场面。

2018年11月21日的《自然》杂志上发布一则简短的新闻,在大气层中工作的“离子发动机”推进下的模型飞机在飞行了50米的距离,飞行试验总共进行了10次,每次都飞行都非常稳定。

当然明白人都知道这是“离子风”发动机,距离传说中真正的大气层内离子发动机还远着呢。

当然无论是空间电推还是大气层内的离子发动机去得突破性进展,对于人类来说都是福音,前者是人类深空载人探测的敲门砖,而后者则可以将人类从化石燃料时代过渡到电能时代,这很重要,因为电能比化石燃料取得更为容易。

离子电推进的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于离子电推进技术书、离子电推进的信息别忘了在本站进行查找喔。

免责声明:本文来自网友投稿,不代表助推了的观点和立场,如有侵权请联系本平台处理。