斜率是什么(斜率大小与倾斜程度的关系)
今天给各位分享斜率是什么的知识,其中也会对斜率大小与倾斜程度的关系进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
斜率是什么?公式?
斜率,数学、几何学名词,是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
对于一次函数y=kx+b(斜截式),k即该函数图像的斜率。当直线L的斜率存在时,斜截式y=kx+b。当x=0时,y=b。
对于任意函数上任意一点,其斜率等于其切线与x轴正方向所成角的正切值,即k=tanα。
扩展资料
曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
当f'(x)0时,函数在该区间内单调递增,曲线呈向上的趋势;当f'(x)0时,函数在该区间内单调减,曲线呈向下的趋势。
在区间(a, b)中,当f''(x)0时,函数在该区间内的图形是凸(从上向下看)的;当f''(x)0时,函数在该区间内的图形是凹的。
参考资料来源:百度百科-斜率
[img]什么是斜率,用什么符号表示?
斜率是直线倾斜角的正切值,一般用k表示,k=tanθ,θ是直线的倾斜角.
当直线倾斜角θ=90°时,无斜率.
θ∈[0°,180°).
k∈R.
斜率是什么
斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。
如果直线与x轴互相垂直,直角的正切值为tan90°,故此直线不存在斜率(也可以说直线的斜率为无穷大)。当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像的斜率。
曲线斜率:
曲线的上某点的斜率则反映了此曲线的变量在此点处的变化的快慢程度。
曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
当f'(x)0时,函数在该区间内单调递增,曲线呈向上的趋势。当f'(x)0时,函数在该区间内单调减,曲线呈向下的趋势。
斜率是什么意思?
斜率用来量度斜坡的斜度。
数学上,直线的斜率在任一处皆相等,是直线倾斜程度的量度。
斜率亦称“角系数”,表示平面直角坐标系中表示一条直线对横坐标轴的倾斜程度的量。
直线对X 轴的倾斜角α的正切值tgα称为该直线的“斜率”,并记作k,k=tgα。规定平行于X轴的直线的斜率为零,平行于Y轴的直线的斜率不存在。对于过两个已知点(x1,y1) 和 (x2,y2)的直线,若x1≠x2,则该直线的斜率为k=(y1-y2)/(x1-x2)。
扩展资料
相关公式
当直线L的斜率存在时,斜截式y=kx+b,当x=0时,y=b。
当直线L的斜率存在时,点斜式y₂-y₁=k(x₂-x₁)
对于任意函数上任意一点,其斜率等于其切线与x轴正方向所成的角,即k=tanα。
斜率计算:ax+by+c=0中,k=-(a/b)。
两条垂直相交直线的斜率相乘积为-1:k₁·k₂=-1。
斜率是什么?
“斜率”是一个数学名词,可理解为倾斜的程度,它是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。
直线对X轴的倾斜角α的正切值tgα称为该直线的“斜率”,记作k,k=tanα。
关于斜率是什么和斜率大小与倾斜程度的关系的介绍到此就结束了,记得收藏关注本站。